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With the development of more comprehensive strategies for on-line monitoring and the developments in smart sensor
technology and digital data acquisition, there is a need to develop change point detection algorithms which can be used
on-line for automated diagnosis of structural health. This is especially required in the case of bridge stocks consisting
of large number of bridges which are monitored simultaneously. For structures affected by chloride-induced corrosion
of reinforcement, the ability to detect corrosion of reinforcement in its early stages is critical in directing repairs to
the most at-risk structures and will help in optimizing the use of limited funds. In this study, the identification of time
of corrosion initiation is modeled as a problem of change point detection in online monitored electrochemical current
noise data. For change point detection, an algorithm based on maximum likelihood approach is considered. Formu-
lations are made for the determination of window size for the online monitored data points to be considered and the
threshold value for the decision function. The usefulness of the algorithm is studied by considering an example pro-
blem of identification of time of corrosion initiation in a reinforced concrete bridge girder, in a Monte Carlo simulation
framework. The studies presented in this paper are towards realizing sustainable infrastructure considering service
life planning and declaration and assessment of sustainability aspects.

KEYWORDS: Reinforced concrete; chloride-induced corrosion; corrosion initiation; change point detection; structural he-
alth monitoring.

At present, the design and construction of infrastructural
systems is guided by functional performance and conven-
tional financial costing. However, the need to consider the
sustainability of the built environment in the infrastructural
design decisions is an important issue warranting attention.
Sustainability implies that the needs of the present generation
are met without wasting, polluting or damaging/destroying
the environment and without compromising the ability of the
future generations to meet their needs. A sustainable infra-
structure should take into consideration the three dimensions
of sustainability, namely, social, environmental and economi-
cal. According to the concept of sustainability, the entire life
cycle of a structure or an infrastructure can be divided into fi-
ve phases, ’from cradle to grave’, including planning, design,
construction, operation/maintenance and removal. The con-
cept of sustainability brings to the fore the importance of: (a)
life-cycle management, (b) rational scheduling of in-service
inspection, (c) repair and rehabilitation, retrofitting, (d) use
of energy efficient/non-conventional materials of constructi-
on at various stages of life of the structure, and, (e) appli-
cation of advanced research tools/techniques to ascertain the
efficiency of existing structures and/or extend the life of the
existing structures.

The ISO standards (ISO 15392, ISO 15686) 1,2 aim to im-
plement the concept of sustainability and to bring conside-
ration of sustainability to an internationally established com-
mon ground3. These standards are performance-based rather
than prescriptive, and embrace the concept of performance-
based building (The term building here refers to the activity
of building). This concept is based on the clear and unambi-
guous identification of verifiable performance requirements.
The concept of service life planning allows for the conside-
ration of how the performance of the building develops over
time. A design option is considered reasonable when it meets
or exceeds the performance requirements over time. The me-
thodological context of performance-based building, service
life planning, and declaration and assessment of building re-
lated sustainability is shown in Fig. 1.
Performance-based building (PBB): Considering
performance-based building as a starting point helps in esta-
blishing clear and quantitative performance requirements,
which can be used to identify a building design that suc-
cessfully meets the clients’ real demands. This requires
transforming the user requirements (containing aspects of
functionality, quality, comfort, efficiency, etc.) into technical
performance requirements. With the identification of perfor-
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mance requirements, the decision process can relate to and
restrict itself to these performance requirements.

PBB is, in short, all about handling aspects related to de-
mand of performance requirements to the supply of perfor-
mance functionality. It may be noted that the supply of per-
formance provided by a building at its design level is only
considered here.

In this stage, the demand of performance requirements
and the supply of performance by different design alternati-
ves are identified (scenario identification).
Service Life Planning (SLP): Performance of a building
usually decreases with time. The concept of SLP allows for
the consideration of how the performance of the building de-
velops over time. SLP establishes a rationale for how the
long-term performance of a design alternative can be model-
led for a specific building design with a defined use pattern
and under the exposure to an identified environment.

Performence over
            time

Performence-based building

  Demand of 
performaence
(requirments)

   Supply of
 performence
(functionality)

 Scenario
identifica-
    tion

 Process
identifica-
    tion

Service Life Planning

Declaration and Assessment

Quantification

Aspects Impacts
Assessment

Performence

Economic

Social

Environment

Initial Performence

Description

Fig. 1 The sequential relationship of the concepts of performance-based
building, service life planning and declaration, and assessment of
sustainability aspects of buildings3.

Modelling the performance over time allows identifying
maintenance processes as well as the timing for replacement
of components (process identification). Remote health moni-
toring is an emerging paradigm which needs to be considered
at this stage, especially for important infrastructural facilities
like bridges.

Declaration and Assessment: The process identification hel-
ps in having a more detailed description and a subsequent
quantification of all processes and activities taking place du-
ring the life cycle of the building (declaration). Using this
information, the quantification and assessment of impacts;
whether these are economic, environmental, or social, is car-
ried out. Finally, the performances of different design alterna-
tives are assessed, based on which the selection of a particular
design alternative is made.

Sustainability of the infrastructure performance can be
assessed by performing continuous structural health monito-
ring. The essence of structural health monitoring can be con-
sidered to involve measurement, inspection, and assessment

of in-service structures on a continuous basis with mini-
mum labor requirement. Structural health monitoring is a
monitoring methodology intended to continuously assess a
structural system for identification of damage. Long-term
continuous monitoring of major bridges (where long-term
designates years-to-decades and desirably the entire life cy-
cle) using permanent monitoring systems, is a very recent
concept, enabled by recent advances in sensing, data acqui-
sition, computing, communication, and data and informati-
on management4. One of the major shortcomings of perma-
nent monitoring systems is the extensive lengths of coaxial
wires required for transfer of sensor measurements, which
drives up installation and maintenance costs. Straser and
Kiremidjian5 proposed integration of wireless radio with sen-
sor to reduce the cost of structural health monitoring systems.
Lynch6 has extended the functionality of wireless sensors by
integrating sophisticated microcontroller with them to enable
sensor-based execution of embedded engineering algorithms
for data interrogation. Performing data interrogation at the
wireless sensor is prudent from an energy standpoint, as wi-
reless radios consume the most power in the wireless sensing
unit. Wireless communication of raw time history records
would be an inefficient use of limited battery resources. In-
stead of transmitting raw time history data, the wireless sen-
sing unit is used to first interrogate the data to distil a small
number of indicators that would then be wirelessly transmit-
ted. For instance, damage detection algorithms could be used
to determine if damage is present and wireless radio is used
for transmitting data only if damage was found 7. The com-
mon feature of damage detection is the fact that the problem
of interest is the detection of one or several changes in some
characteristic properties of the considered system. Thus, ma-
ny damage detection problems can be stated as the problem
of detecting a change in the parameters of a static or dyna-
mic stochastic system. The time instant at which the change
of interest occurs is called the change point8.

From the above discussion, it is noted that there is a need
to develop algorithms for change point detection in on-line
monitoring data recorded/cached in a central location and
analyzed in real-time for automated diagnosis of structural
health. In civil structures, the identification of damage be-
fore critical failure is of extreme importance. For structures
affected by chloride-induced corrosion of reinforcement, the
ability to detect corrosion of reinforcement in its early stages
is critical in directing repairs to the most at-risk structures
and will help in optimizing the use of limited funds. With the
development of more comprehensive strategies for on-line
monitoring and the developments in smart sensor technolo-
gy and digital data acquisition9, there is a need to develop
change point detection algorithms which can be used on-line
for automated diagnosis of structural health. This is especi-
ally required in the case of bridge stocks consisting of large
number of bridges which are monitored simultaneously.

From laboratory experimental investigations, it has been
noted that electrochemical noise can indicate the current level
of corrosion activity of steel in concrete, especially transition
from passive state to active corrosion. There is a need to de-
velop automated procedures, which can be used to identify
the time of corrosion initiation from the online monitored
electrochemical noise data. Towards this, the identification
of time of corrosion initiation is modeled as a problem of
change point detection in online monitored electrochemical
current noise data. For change point detection, an algorithm
based on maximum likelihood approach is considered, and
the performance of the algorithm is studied in a Monte Car-
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lo simulation framework. The studies presented in this pa-
per are towards the service life planning and declaration and
assessment of sustainability aspects for realizing sustainable
infrastructure. The details of the studies are given in the fol-
lowing sections.

CORROSION MONITORING USING ELECTROCHE-
MICAL NOISE TECHNIQUE

Studies by various researchers10-14 suggested that localized
corrosion processes (such as that associated with chloride-
induced corrosion of reinforcement in concrete) give parti-
cularly strong electrochemical noise response. The type of
corrosion is indicated by the coefficient of variation of cur-
rent noise, ranging from 10−3 for general corrosion to 1.0
for localized corrosion15. Before initiation of corrosion, the
reinforcement in concrete is in the passive state (corrosion
currents are negligible, i.e., < 1 mA/m2) and hence the mean
corrosion current can be taken as zero. When depassivation
of steel occurs, there is a shift in the mean corrosion current,
indicating initiation of active corrosion. Thus, by detecting
the shift in the mean corrosion current, time of corrosion in-
itiation can be identified. In this study, identification of ti-
me of corrosion initiation is posed as a problem of detection
of single change point in on-line monitored electrochemical
current noise data.

Electrochemical noise

Electrochemical noise (EN) is a general term for the ’ran-
dom’ fluctuations in current or potential which occurs as an
electrochemical process proceeds. EN technique is an emer-
ging technique for monitoring corrosion of reinforcement in
concrete11, 12, 16. While the corrosion current is related to the
rate (kinetics) of the reaction, the electrochemical potential is
related to the driving force (thermodynamics) of the reaction.
The advantages of EN technique are14:

i. Lack of intrusiveness (its application does not involve ex-
ternal perturbation of the corroding system)

ii. Instruments required to make the measurements are re-
asonably simple, particularly with modern computer-
based data acquisition techniques, and,

iii. Localized corrosion processes, which are difficult to mo-
nitor with other techniques, tend to give particularly
strong EN signals

Measurement of electrochemical noise

Arrangement for measurement of electrochemical noise typi-
cally consists of three electrodes arranged as WE-RE-CE or
WE-WE-RE or WE-WE-WE, where WE is a working elec-
trode (made of the same type of metal that is being monito-
red), RE is a reference electrode (which maintains a constant
potential in the environment), and CE is a counter electrode
(made of a noble material like platinum). The measurement
arrangements can be classified as:

i. Potentiostatic (WE-RE-CE) in which constant potential
is maintained between WE and RE and the current bet-
ween WE and CE is monitored and recorded. This ar-
rangement is used in laboratory electrochemical studies
under polarized conditions.

ii. Galvanostatic (WE-RE-CE) in which a constant current
is passed through WE and CE, and the potential of WE
is monitored and recorded against RE, and,

iii. Zero resistance ammeter (ZRA) mode (WE-WE-RE) in
which a zero resistance ammeter between two WEs mea-
sure the current and a voltmeter between WE and RE
measures the potential. This arrangement is used for EN
measurements under freely corroding conditions, and is
useful for on-line monitoring of corrosion in reinforced
concrete structures.

IDENTIFICATION OF TIME OF CORROSION IN-
ITIATION AS A CHANGE POINT DETECTION PRO-
BLEM

Consider a reinforced concrete member, wherein the corrosi-
on currents are monitored by recording current flow between
two identical, electronically isolated, rebar probes, embedded
in concrete, and coupled through a ZRA. At t i (when depas-
sivation of steel occurs), there is a shift in mean corrosion
current, indicating initiation of active corrosion. The actual
shift in mean value of corrosion current depends on diffe-
rent factors (viz. humidity content in concrete, temperature,
etc.) Andrade et al17 presented typical ranges for corrosion
current for different exposure conditions, based on measure-
ments made on laboratory specimens and on real structures.
These ranges of values of corrosion current for different ex-
posures can be further subdivided18 using typical trend of va-
riation of rate of corrosion with water-cement ratio 19. Thus,
knowing the exposure condition and water-cement ratio used,
the range of values of corrosion current that can be expected
in the girder after depassivation can be identified, which will
give an idea about amplitude of shift in mean corrosion cur-
rent. Thus, the identification of ti can be viewed as a problem
of identifying the time of shift in mean of the monitored cor-
rosion current data, i.e., a change point detection problem.

The development of algorithms for change point detec-
tion in signals is an active area of research with applicati-
ons in various disciplines8, 20-24. The different approaches for
solving change point detection problem include maximum
likelihood, Bayesian, Bayes-type, nonparametric as well as
decision-theoretic procedures25. While most of these approa-
ches are based on time-domain analysis, in some cases, it
may be required to analyze data in both time and frequency
domains. For instance, a step-shift in the mean of the signal
is localized in the time domain, whereas a change in variance
is more localized in the frequency domain26. Thus, if the in-
terest is to detect changes in both mean and variance, the data
should be analyzed using a time-frequency approach. Since,
in the present study, the interest is in the identification of a
step-shift in the mean of the corrosion current data, a time-
domain based algorithm is used.

ALGORITHM BASED ON MAXIMUM LIKELIHOOD
APPROACH FOR IDENTIFICATION OF TIME OF
CORROSION INITIATION

This is one of the oldest and most well known approaches to
identify the change detection. The approach is based on the
log-likelihood ratio of the observations8.

It is assumed that the monitored corrosion current data
can be represented using a Gaussian white noise (GWN) pro-
cess. A sample of N observations (N points of the monito-
red data) is considered, and a decision function is computed
to test between the two following hypotheses (H0 and H1)
about the parameter of interest (mean, μ, inthepresentstudy).

H0 : μ = μ0; no change in occured
H1 : μ = μ1; change has occured (1)
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The change detection is commonly carried out by com-
puting a decision function, SN , using the observed data, and
comparing it with a threshold value Define the decision func-
tion, SN , as:

SN =
N∑

i=1

Si (2)

where si is the log-likelihood ratio for the observations
yi, i = 1, N . If p

Y
(y) is the probability density function for

the observed process, then si is defined as:

si = ln

(
p

Y
(Yi; μ = μ1)

p
Y
(yi; μ = μ0)

)
(3)

For the Gaussian process (as considered in the present
study), Eq. (3) can be written as:

si = ln
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where μ0 is the original mean (equal to zero in the present
case) and μ1 is the changed value of mean of the Gaussian
distribution, and σ is the standard deviation of the Gaussian
distribution. Simplifying Eq. (4), one get:

si =
μ1 − μ0

σ2

(
yi − μ1 + μ0

2

)
(5)

The above equation can be written as (Basseville and Ni-
kiforov, 1993):

si =
b

σ

(
yi − μ0 − A

2

)
(6)

where

A = μ1 − μ0 (7)

is the amplitude of shift and

b =
μ1 − μ0

σ
(8)

is the signal-to-noise ratio (since the signal to be detected is
the change in mean from μ0 to μ1 and σ is the characteristic
of the noise in the observations about the mean).

Substituing Eq. (6) in Eq. (2), the decision function beco-
mes:

SN =
b

σ

N∑
i=1

(
yi − μ0 − A

2

)
(9)

The stopping rule (decision rule) for the change detection
algorithm is given by:

d =
{

0 if SN < h; H0 is chosen
1 if SN ≥ h; H0 is chosen

(10)

where h is a conveniently chosen threshold. The threshold
value can be chosen based on the error probabilities in hy-
pothesis testing. When a decision regarding a hypothesis is
made, four possibilities exist and two of them lead to error
(Fig. 2).

No error

No error

Type I error

Type II error

accept H0 accept H1

H0 is true

H1 is true

Fig. 2 Schematic of decision possibilities in hypothesis testing.

Type I error occurs when there is actually no change in
mean but the algorithm detects a change in mean, while Ty-
pe II error occurs when there is actually a change in mean
but the algorithm does not detect the change. The probabili-
ty of Type I error is called the significance level (α) of the
hypothesis test, and the probability of Type II error is cal-
led the operating characteristic (β) of the hypothesis test27.
The complementary probability (1 − β) is called the power
of the test. In change detection, Type I- and Type II- errors
are called false detection and non-detection, respectively. The
probability of false detection (PFD) and the probability of
non-detection (PND) are two of the different performance
indices used for designing and evaluating change detection
algorithms, and these two values should be as low as pos-
sible. There is a trade-off between the probability of false
detection and the probability of non-detection, and as one is
reduced, the other one increases. The probability of false de-
tection need to be kept to a minimum based on economic
considerations since a detailed inspection need to be carried
out every time the algorithm detects a change. However, in
the case of chloride-induced corrosion of reinforcement in
reinforced concrete structural members, timely identification
of corrosion initiation is important for controlling the dama-
ge due to corrosion and for cost-effective maintenance and
repair. Therefore, the probability of non-detection should be
kept as a minimum, based on economic and social considera-
tions. This can be achieved by suitably choosing the sample
size (N) and the threshold (h). A procedure is given in the
following section for determining the values of N and h, ba-
sed on the allowable values of probability of false detection
and the probability of non-detection.

Determination of sample size and threshold for the deci-
sion function - proposed method

The determination of probability of false detection and the
probability of non-detection requires the estimation of the
mean and standard deviation (SD) of S N . The same can be
determined as follows.

Since in the present study, μ0 = 0, the amplitude of shift
A = μ1 (from Eq. (7)). Accordingly, the decision function
given by Eq. (9) can be written as:

SN =
b

σ

N∑
i=1

(
yi − A

2

)
=

b

σ

(
N∑

i=1

yi − Nμ1

2

)
(11)

Suppose there are r sample points corresponding to the
Gaussian process with changed value of mean (μ1). Then
Eq. (11) can be written as:

SN =
b

σ

(
N−r∑
i=1

yi +
N∑

i=N−r+1

yi − Nμ1

2

)
(12)
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Since the y
′
is are Gaussian, SN follows a Gaussian distri-

bution. The mean and variance of S N are given by:

〈
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)
(13)
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(

b

σ

)2 (
(N − r)σ2 + rσ2

)
= b2N (14)

It is noted from these equations [Eqs. (13) and (14)] that
the mean and variance of SN depend upon the signal-to-noise
ratio (b) and the sample size (N). If there are no change
points, then r = 0 and

〈
SN
〉

= − b2N
2 , that is the mean

value of the decision function is negative when there are no
change points in the data. When all the N data points are with
a change in mean, then r = N and

〈
SN
〉

= b2N
2 . This is in

agreement with the typical behaviour of the decision func-
tion corresponding to a change in the mean of a Gaussian
sequence with constant variance8.

Let SN
0 and SN

r represent SN corresponding to the hy-
potheses H0 and H1, respectively. For hypothesis H0, r = 0
and for hypothesis H1, r can be any value between 1 to N .
Therefore, the values of mean and variance of S N

0 and SN
r

can be determined as:
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(16)

var[SN
r ] =

N∑
r=1

var[SN ] =
N∑

r=1

b2N

= b2N2

As explained above, false detection occurs when H1 is
chosen (a change is detected) when H0 is actually true (the-
re is actually no change in mean). This happens when the
value of the decision function SN

0 becomes larger than the
threshold, h. Thus, the probability of false detection (PFD)
is given by:

PFD = α = Pr(SN
0 > h) = 1 − Pr(SN

0 ≤ h) (17)

Since SN
0 follows a Gaussian distribution, Eq. (17) can

be written as

α = 1 − Φ

(
h − 〈SN

0

〉
SD[SN

0 ]

)
(18)

where Φ(.) represents the cumulative density function of
standard normal distribution and SD[.] represents the stan-
dard deviation. Substituting for

〈
SN

0

〉
and SD[SN

0 ] using
Eq. (15) in Eq. (7),

α = 1 − Φ

(
h + b2 N

2

b
√

N

)
(19)

The non-detection occurs when H0 is chosen (no change
is detected) when H1 is actually true (there is actually a
change in mean). This happens when the value of the decisi-
on function, SN

r , remains within the threshold, h. Thus, the
probability of non-detection (PND) is given by:

PND = β = Pr
(
SN

r ≤ h) (20)

Since SN
r follows a Gaussian distribution, Eq. (20) can

be written as

β = Φ

(
h − 〈SN

r

〉
SD[SN

r ]

)
(21)

Substituting for
〈
SN

r

〉
and SD[SN

r ] using Eq. (16) in the
above equation,

β = Φ

(
h − b2 N

2

bN

)
(22)

From Eqs. (19) and (22), it is noted that α and β are func-
tions of both N and h. For the specified values of α and β,
Eqs. (19) and (22) can be solved simultaneously to obtain
the required values of N and h to be used in change point
detection.

The usefulness of the proposed algorithm for identificati-
on of corrosion initiation is illustrated through an application.

APPLICATION

A reinforced concrete bridge girder, located in a severe en-
vironment (as per the definitions of exposure conditions in
IS 456-200028 with cross-sectional details as shown in Fig.
3 is considered. For studying the efficiency of the proposed
algorithms for change point detection, an ensemble of y(t)
is generated which is assumed to represent the electroche-
mical current noise data obtained from on-line monitoring
and stochasticity in time of occurrence of change point event
(initiation of chloride-induced corrosion) is taken into con-
sideration. The entire problem has been formulated within
the framework of Monte Carlo simulation29, and is depicted
schematically in Fig. 4.

350 mm

2000 mm

205 mm

Ast Ast = 6 Nos. 30 mm dia. bars
fck = 37.5 MPa
Water cement ratio = 0.45

990 mm

Fig. 3 Cross-sectional details of reinforced concrete bridge girder.
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S - System (reinforced concrete structural member) 
ξi (t), i = 1,2, …, 1000 – Different realizations of response of system 

(electrochemical current noise) when there were no active corrosion
H – Initiation of chloride-induced corrosion due to due to ingress of 

chlorides from environment (hazard)
λi, i = 1,2, …, 1000 – Different realizations of time of corrosion initiation

yi (t), i = 1,2, …, 1000 – Different realizations of response of system with 
the initiation of chloride-induced corrosion at time λi

S .
..

H
.
..

.

..

ξ1 (t)

ξ2 (t)

ξ100 (t)

λ1

λ2

λ1000

y1(t)

y2(t)

y1000(t)

Fig. 4 Schematic representation of problem considered.

Assuming ingress of chlorides into cover concrete as a
diffusion process, time-to-corrosion initiation (t i) can be de-
termined from Fick’s second law of diffusion as

ti =
d2

4D

[
erf−1

(
cs − ccr

cs

)]−2

(23)

where d is the clear cover to reinforcement, D is the diffusion
coefficient for chlorides in concrete, cs is the surface chlori-
de concentration and ccr is the critical chloride concentrati-
on. To account for variations in workmanship and exposure
conditions, d, D, cs and ccr are treated as random variables.
The values of mean and standard deviation of these random
variables are given in Table 1. All the random variables are
assumed to be statistically uncorrelated with each other. The
mean and standard deviation of time-to-corrosion initiation
are determined using first order approximation as 14.11 years
and 9.42 years, respectively. It is assumed that t i follows a lo-
gnormal distribution30.

TABLE 1

VALUES OF MEAN AND STANDARD DEVIATION (SD)
FOR THE RANDOM VARIABLES CONSIDERED

variable mean SD Remarks
d (mm) 45 2.25 Assumed cov of 0.05

D (cm2/s) 5 × 10−8 1 × 10−8 cov = 0.20
(Balaji Rao et al, 2004)31

cs 0.25 0.05 cov = 0.20
(% by weight of concrete) (Balaji Rao et al, 2004)31

ccr 0.125 0.025 Assumed cov of 0.20
(% by weight of concrete)

The amplitude of shift in mean corrosion current is taken
as 0.15μA, with a standard deviation of 0.05μA, which is
consistent with exposure condition considered for the girder.
In the present study, simulated electrochemical noise data,
representing the monitored corrosion currents, is used. Cottis
et al32. used a shot noise model to simulate electrochemical
noise data. It is assumed that monitored electrochemical noi-
se data can be represented by a GWN process. One thousand

realizations of GWN process are generated representing the
possible realizations of monitored electrochemical noise for a
period of 100 years at an interval of 0.01 years. One thousand
lognormal random variables, representing time-to-corrosion
initiation, one for each realization of the observed process,
are generated. Typical realizations of the observed process
(electrochemical noise) without and with shift (corrosion in-
itiation) are shown in Fig. 5.

Fig. 5 Typical realizations of the observed process (simulated in the
present study) without- and with- shift (time of corrosion
initiation = 16.1 years).

RESULTS AND DISCUSSION

For the problem considered, the signal-to-noise ratio (b) is
3. The variation of decision function, S N , with time for a
typical realization of the observed process, for sample size
N = 100, is shown in Fig. 6. It is noted from this figure
that, as expected, the value of SN is negative in the begin-
ning (when there is no shift), with a magnitude around the
mean value of SN

0 (
〈
SN

0

〉
= −b2 N

2 = −450 using Eq. 15)
corresponding to the hypotheses H0. After the shift has oc-
curred (corrosion has initiated), the value of S N increases till
the number of changed points in the sample becomes N , i.e.,
r = N . After this, the value of SN is around the mean value
= b2 N

2 = 450 (using Eq. 16), as is noted from Fig. 6.
Considering a 1% level of significance (probability of fal-

se alarm = 0.01), the variation of sample size (N) and thres-
hold (h) required for different values of probability of non-
detection are shown in Fig. 7.

From Fig. 7, it is noted that as the probability of non-
detection decreases, N increases, and h decreases. This sug-
gests that a large value of N should be chosen for minimizing
the probability of non-detection. But, as the sample size in-
creases, the delay in detection also increases. This is because
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one has to wait till the window is completely filled for com-
puting the value of decision function. Thus, an optimal value
of probability of non-detection should be selected conside-
ring the delay in detection also. The variation in mean and
standard deviation of delay in detection for different values
of probability of non-detection are shown in Fig. 8.
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Fig. 6 Variation of decision function with time (N = 100, time of
corrosion initiation = 16.4 years).

Fig. 7 Variation in sample size and threshold with probability of
non-detection (probability of false detection, α = 0.01).

Fig. 8 Variation in statistical properties of delay in detection with
probability of non-detection.

From Fig. 8, it is noted as probability of non-detection
decreases (accordingly, the sample size N required increa-
ses), the mean and standard deviation of delay in detection
increases. However, upto a value of 0.0035 of probability of
non-detection, the increase in the mean and standard devia-
tion of delay in detection is marginal. If the probability of
non-detection is decreased further, there is a sudden increase
in the mean and standard deviation of delay in detection. The-
refore, the optimal value of probability of non-detection for
the problem considered is about 0.0035 (0.35%). The corre-
sponding values of N and h (from Fig. 7) are 59 and -265.5.
These values are used in the present study for change point
detection. The comparison of actual and predicted values of

time of corrosion initiation is shown in Fig. 9, and frequency
distributions of the same are shown in Fig. 10. From these
figures, it is noted that the predicted times of corrosion initia-
tion are in good agreement with the actual times of corrosion
initiation.

Fig. 9 Comparison of actual and detected times of corrosion initiation.

Fig. 10 Frequencies of actual and detected times of corrosion initiation.

The values of mean and standard deviation of delay in
detection are 0.06 years and 0.025 years, respectively. The
small values of mean and standard deviation of delay in de-
tection indicate the usefulness of the proposed algorithm.

CONCLUSIONS

An algorithm is proposed for identifying time of corrosi-
on initiation in reinforced concrete structures using on-line
electrochemical noise data measured using ZRA technique.
The algorithm is based on the maximum likelihood approach.
Formulations are also made for the determination of window
size and the threshold value for the decision function based
on the signal-to-noise ratio. The usefulness of the algorithm
is studied by using an example problem of identification of
time of corrosion initiation in a reinforced concrete bridge
girder, using simulated corrosion current data. The results in-
dicate that proposed algorithm has desirable properties of on-
line change point detection algorithms. The window size and
the threshold value for the decision function determined in
the study are specific to the problem considered. More stu-
dies are required to develop general guidelines on window
size and the threshold value for the decision function to be
used for reinforced concrete structural members in different
exposure conditions. The studies presented in this paper will
be useful while carrying out service life planning (by hel-
ping in planning maintenance/repair) and declaration and as-
sessment of sustainability aspects (economic and social con-
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siderations by controlling the damage due to corrosion and
helping in cost-effective maintenance and repair).
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